Rod Sensitivity During Xenopus Development

Author:

Xiong Wei-Hong1,Yau King-Wai123

Affiliation:

1. Departments of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205

2. Departments of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205

3. Departments of Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205

Abstract

We have measured the sensitivity of rod photoreceptors from overnight-dark–adapted Xenopus laevis through developmental stages 46–66 into adulthood by using suction-pipette recording. The dark current increased gradually from ∼5 pA at stage 46 to ∼20 pA at stage 57, compared with an adult (metamorphosed) current of ∼35 pA. This increase in dark current largely paralleled the progressive increase in length and diameter of the rod outer segment (ROS). Throughout stages 46–66, the dark current increased approximately linearly with ROS surface area. At stage 53, there was a steep (∼10-fold) increase in the rod flash sensitivity, accompanied by a steep increase in the time-to-peak of the half-saturated flash response. This covariance of sensitivity and time-to-peak suggested a change in the state of adaptation of rods at stage 53 and thereafter. When the isolated retina was preincubated with 11-cis-retinal, the flash sensitivity and the response time-to-peak of rods before stage 53 became similar to those at or after stage 53, suggesting that the presence of free opsin (i.e., visual pigment without chromophore) in rods before stage 53 was responsible for the adapted state (low sensitivity and short time-to-peak). By comparing the response sensitivity before stage 53 to the sensitivity at/after stage 53 measured from rods that had been subjected to various known bleaches, we estimated that 22–28% of rod opsin in stage 50–52 tadpoles (i.e., before stage 53) was devoid of chromophore despite overnight dark-adaptation. When continuously dark adapted for 7 d or longer, however, even tadpoles before stage 53 yielded rods with similar flash sensitivity and response time-to-peak as those of later-stage animals. In conclusion, it appears that chromophore regeneration is very slow in tadpoles before stage 53, but this regeneration becomes much more efficient at stage 53. A similar delay in the maturity of chromophore regeneration may partially underlie the low sensitivity of rods observed in newborn mammals, including human infants.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3