Light-dependent K+ Channels in the Mollusc Onchidium Simple Photoreceptors Are Opened by cGMP

Author:

Gotow Tsukasa1,Nishi Takako23

Affiliation:

1. Department of Physiology, Faculty of Medicine, Kagoshima University, Kagoshima 890-8520, Japan

2. Laboratoire de Neurobiologie Cellulaire et Moleculaire, CNRS, 91198 Grif-sur-Yvette, Cedex, France

3. Laboratory of Physiology, Senshu University, Kawasaki 214-8580, Japan

Abstract

Light-dependent K+ channels underlying a hyperpolarizing response of one extraocular (simple) photoreceptor, Ip-2 cell, in the marine mollusc Onchidium ganglion were examined using cell-attached and inside-out patch-clamp techniques. A previous report (Gotow, T., T. Nishi, and H. Kijima. 1994. Brain Res. 662:268–272) showed that a depolarizing response of the other simple photoreceptor, A-P-1 cell, results from closing of the light-dependent K+ channels that are activated by cGMP. In the cell-attached patch recordings of Ip-2 cells, external artificial seawater (ASW) was replaced with a modified ASW containing 150 mM K+ and 200 mM Mg2+ to suppress any synaptic input and to maintain the membrane potential constant. When Ip-2 cells were equilibrated with this modified ASW, the internal K+ concentration was estimated to be 260 mM. Light-dependent single-channels in the cell-attached patch on these cells were opened by light but scarcely by voltage. After confirming the light-dependent channel activity in the cell-attached patches, an application of cGMP to the excised inside-out patches newly activated a channel that disappeared on removal of cGMP. Open and closed time distributions of this cGMP-activated channel could be described by the sum of two exponents with time constants τo1, τo2 and τc1, τc2, respectively, similar to those of the light-dependent channel. In both the channels, τo1 and τo2 in ms ranges were similar to each other, although τc2 over tens of millisecond ranges was different. τo1, τo2, and the mean open time τo were both independent of light intensity, cGMP concentration, and voltage. In both channels, the open probability increased as the membrane was depolarized, without changing any of τo2 or τo. In both, the reversal potentials using 200- and 450-mM K+-filled pipettes were close to the K+ equilibrium potentials, suggesting that both the channels are primarily K+ selective. Both the mean values of the channel conductance were estimated to be the same at 62 and 91 pS in 200- and 450-mM K+ pipettes at nearly 0 mV, respectively. Combining these findings with those in the above former report, it is concluded that cGMP is a second messenger which opens the light-dependent K+ channel of Ip-2 to cause hyperpolarization, and that the channel is the same as that of A-P-1 closed by light.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Compensation mechanism for membrane potential against hypoosmotic stress in the Onchidium neuron;Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology;2022-12

2. Molecular and functional identification of a novel photopigment in Pecten ciliary photoreceptors;Journal of General Physiology;2018-01-26

3. Neurobiology and Behaviour of the Scallop;Scallops - Biology, Ecology, Aquaculture, and Fisheries;2016

4. Melanopsin mediates light-dependent relaxation in blood vessels;Proceedings of the National Academy of Sciences;2014-11-17

5. Understanding the dermal light sense in the context of integrative photoreceptor cell biology;Visual Neuroscience;2011-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3