Synergistic Activation of ENaC by Three Membrane-bound Channel-activating Serine Proteases (mCAP1, mCAP2, and mCAP3) and Serum- and Glucocorticoid-regulated Kinase (Sgk1) in Xenopus Oocytes

Author:

Vuagniaux Grégoire1,Vallet Véronique1,Jaeger Nicole Fowler1,Hummler Edith1,Rossier Bernard C.1

Affiliation:

1. Institut de Pharmacologie et de Toxicologie, Université de Lausanne, 1015 Lausanne, Switzerland

Abstract

Sodium balance is maintained by the precise regulation of the activity of the epithelial sodium channel (ENaC) in the kidney. We have recently reported an extracellular activation of ENaC-mediated sodium transport (INa) by a GPI-anchored serine protease (mouse channel–activating protein, mCAP1) that was isolated from a cortical collecting duct cell line derived from mouse kidney. In the present study, we have identified two additional membrane-bound serine proteases (mCAP2 and mCAP3) that are expressed in the same cell line. We show that each of these proteases is able to increase INa 6–10-fold in the Xenopus oocyte expression system. INa and the number (N) of channels expressed at the cell surface (measured by binding of a FLAG monoclonal I125-radioiodinated antibody) were measured in the same oocyte. Using this assay, we show that mCAP1 increases INa 10-fold (P < 0.001) but N remained unchanged (P = 0.9), indicating that mCAP1 regulates ENaC activity by increasing its average open probability of the whole cell (wcPo). The serum- and glucocorticoid-regulated kinase (Sgk1) involved in the aldosterone-dependent signaling cascade enhances INa by 2.5-fold (P < 0.001) and N by 1.6-fold (P < 0.001), indicating a dual effect on N and wcPo. Compared with Sgk1 alone, coexpression of Sgk1 with mCAP1 leads to a ninefold increase in INa (P < 0.001) and 1.3-fold in N (P < 0.02). Similar results were observed for mCAP2 and mCAP3. The synergism between CAPs and Sgk1 on INa was always more than additive, indicating a true potentiation. The synergistic effect of the two activation pathways allows a large dynamic range for ENaC-mediated sodium regulation crucial for a tight control of sodium homeostasis.

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3