Neural and Photochemical Mechanisms of Visual Adaptation in the Rat

Author:

Dowling John E.1

Affiliation:

1. From the Biological Laboratories, Harvard University, Cambridge, Massachusetts

Abstract

The effects of light adaptation on the increment threshold, rhodopsin content, and dark adaptation have been studied in the rat eye over a wide range of intensities. The electroretinogram threshold was used as a measure of eye sensitivity. With adapting intensities greater than 1.5 log units above the absolute ERG threshold, the increment threshold rises linearly with increasing adapting intensity. With 5 minutes of light adaptation, the rhodopsin content of the eye is not measurably reduced until the adapting intensity is greater than 5 log units above the ERG threshold. Dark adaptation is rapid (i.e., completed in 5 to 10 minutes) until the eye is adapted to lights strong enough to bleach a measurable fraction of the rhodopsin. After brighter light adaptations, dark adaptation consists of two parts, an initial rapid phase followed by a slow component. The extent of slow adaptation depends on the fraction of rhodopsin bleached. If all the rhodopsin in the eye is bleached, the slow fall of threshold extends over 5 log units and takes 2 to 3 hours to complete. The fall of ERG threshold during the slow phase of adaptation occurs in parallel with the regeneration of rhodopsin. The slow component of dark adaptation is related to the bleaching and resynthesis of rhodopsin; the fast component of adaptation is considered to be neural adaptation.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 241 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Equine Vision;Equine Ophthalmology;2022-05-13

2. Seeing With a Few Photons: Bridging Cellular and Circuit Mechanisms With Perception;The Senses: A Comprehensive Reference;2020

3. A Life in Vision;Annual Review of Vision Science;2018-09-15

4. Bone-marrow mesenchymal stem-cell administration significantly improves outcome after retinal ischemia in rats;Graefe's Archive for Clinical and Experimental Ophthalmology;2017-05-18

5. Equine vision;Equine Ophthalmology;2016-12-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3