Affiliation:
1. From the Department of Physiology, University of Minnesota, Minneapolis
Abstract
1. The electronegative membranes described in the literature which show a high degree of ionic selectivity (permitting cations to pass and restricting the anions) have serious shortcomings: their absolute permeability is extremely low, much too small for convenient experimentation; their ionic selectivity in most cases is not as perfect as would be desirable, and is moreover adversely affected by prolonged contact with electrolyte solutions.
2. A method has been worked out to prepare membranes substantially free from these defects. Porous collodion membranes were cast on the outside of rotating tubes and then oxidized with 1 M NaOH. By allowing the oxidized porous membranes to dry in air on the tubes membranes of desirable properties are obtained. These membranes are smooth, have a well defined shape, and allow considerable handling without breaking.
3. This new type membrane when tested for ionic selectivity by the measurement of the "characteristic concentration potential," consistently gives potentials of 54 to 55 mv., the maximum thermodynamically possible value (at 25°C.) being 55.1 mv. This high degree of ionic selectivity is not lost on prolonged contact with water, and is only very slowly affected by electrolyte solutions.
4. The absolute permeability of the new type membranes can be varied over a very wide range by changing the time of oxidation. Under optimum conditions membranes can be obtained with a resistance in 0.1 N KCl solution of only 0.5 ohms per 50 cm.2 membrane area. The absolute rate of cation exchange through these membranes between solutions of different uni-univalent electrolytes is very high, in one case, e.g. 0.9 m.eq. cations per 4 hours, the anion leak being 0.02 m.eq. Thus, the absolute permeability of the new type membranes is two to four orders of magnitude greater than the permeability of the dried collodion membranes and the oxidized ("activated") dried collodion membranes used heretofore. Because of the characteristic properties of the new type membranes the term "megapermselective" (or "permselective") collodion membranes is proposed for them.
Publisher
Rockefeller University Press
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献