Author:
Gros G,Moll W,Hoppe H,Gros H
Abstract
We have measured CO2 fluxes across phosphate solutions at different carbonic anhydrase concentrations, bicarbonate concentration gradients, phosphate concentrations, and mobilities. Temperature was 22-25 degrees C, the pH of the phosphate solutions was 7.0-7.3. We found that under physiological conditions of pH and pCO2 a facilitated diffusion of CO2 occurs in addition to free diffusion when (a) sufficient carbonic anhydrase is present, and (b) a concentration gradient of HCO3- is established along with a pCO2 gradient, and (c) the phosphate buffer has a mobility comparable to that of bicarbonate. When the phosphate was immobilized by attaching 0.25-mm-long cellulose particles, no facilitation of CO2 diffusion was detectable. A mechanism of facilitated CO2 diffusion in phosphate solutions analogous to that in albumin solutions was proposed on the basis of these findings: bicarbonate diffusion together with a facilitated proton transport by phosphate diffusion. A mathematical model of this mechanism was formulated. The CO2 fluxed predicted by the model agree quantitatively with the experimentally determined fluxes. It is concluded that a highly effective proton transport mechanism acts in solutions of mobile phosphate buffers. By this mechanism; CO2 transfer may be increased up to fivefold and proton transfer may be increased to 10,000-fold.
Publisher
Rockefeller University Press
Cited by
87 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献