Abstract
Two types of experiments indicate that light adaptation and excitation are initiated by the same, rather than different, populations of visual pigment. (a) The criterion action spectra of light adaptation and excitation are the same. (b) Increment-threshold curves were measured with a voltage-clamp technique under conditions of high and low concentration of plasma membrane rhodopsin (Rhpm). SD, the dark-adapted sensitivity, and 1/I2, the inverse of the background irradiance that desensitized by 0.3 log units, underwent the same fractional change when the rhodopsin concentration was changed. Both quantities appear to be linearly related to Rhpm. Reversible reductions in Rhpm were achieved by orange irradiation during a brief increase of extracellular pH from 7.8 to 10. This procedure would be unlikely to produce similar concentration changes in a hypothetical intracellular pigment because the concurrent change in intracellular pH, measured using the dye, phenol red, was only 0.45 pH units. It is thus unlikely that an intracellular pigment initiates light adaptation. On the assumption that light adaptation is mediated by a light-induced release of Ca++ from an intracellular store. the results reported here imply that an intracellular transmitter is needed to couple Rhpm to the intracellular store.
Publisher
Rockefeller University Press
Cited by
60 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献