Affiliation:
1. Secretory Mechanisms and Dysfunction Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
2. Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
Abstract
Ae4 (Slc4a9) belongs to the Slc4a family of Cl−/HCO3− exchangers and Na+-HCO3− cotransporters, but its ion transport cycle is poorly understood. In this study, we find that native Ae4 activity in mouse salivary gland acinar cells supports Na+-dependent Cl−/HCO3− exchange that is comparable with that obtained upon heterologous expression of mouse Ae4 and human AE4 in CHO-K1 cells. Additionally, whole cell recordings and ion concentration measurements demonstrate that Na+ is transported by Ae4 in the same direction as HCO3− (and opposite to that of Cl−) and that ion transport is not associated with changes in membrane potential. We also find that Ae4 can mediate Na+-HCO3− cotransport–like activity under Cl−-free conditions. However, whole cell recordings show that this apparent Na+-HCO3− cotransport activity is in fact electroneutral HCO3−/Na+-HCO3− exchange. Although the Ae4 anion exchanger is thought to regulate intracellular Cl− concentration in exocrine gland acinar cells, our thermodynamic calculations predict that the intracellular Na+, Cl−, and HCO3− concentrations required for Ae4-mediated Cl− influx differ markedly from those reported for acinar secretory cells at rest or under sustained stimulation. Given that K+ ions share many properties with Na+ ions and reach intracellular concentrations of 140–150 mM (essentially the same as extracellular [Na+]), we hypothesize that Ae4 could mediate K+-dependent Cl−/HCO3− exchange. Indeed, we find that Ae4 mediates Cl−/HCO3− exchange activity in the presence of K+ as well as Cs+, Li+, and Rb+. In summary, our results strongly suggest that Ae4 is an electroneutral Cl−/nonselective cation–HCO3− exchanger. We postulate that the physiological role of Ae4 in secretory cells is to promote Cl− influx in exchange for K+(Na+) and HCO3− ions.
Funder
National Institute of Dental and Craniofacial Research
NIH
Publisher
Rockefeller University Press
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献