Simultaneous imaging of local calcium and single sarcomere length in rat neonatal cardiomyocytes using yellow Cameleon-Nano140

Author:

Tsukamoto Seiichi1,Fujii Teruyuki1,Oyama Kotaro1,Shintani Seine A.2,Shimozawa Togo3ORCID,Kobirumaki-Shimozawa Fuyu1ORCID,Ishiwata Shin’ichi4,Fukuda Norio1

Affiliation:

1. Department of Cell Physiology, The Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan

2. Department of Physics, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan

3. Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Sinjuku-ku, Tokyo 162-8480, Japan

4. Department of Physics, Faculty of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan

Abstract

In cardiac muscle, contraction is triggered by sarcolemmal depolarization, resulting in an intracellular Ca2+ transient, binding of Ca2+ to troponin, and subsequent cross-bridge formation (excitation–contraction [EC] coupling). Here, we develop a novel experimental system for simultaneous nano-imaging of intracellular Ca2+ dynamics and single sarcomere length (SL) in rat neonatal cardiomyocytes. We achieve this by expressing a fluorescence resonance energy transfer (FRET)–based Ca2+ sensor yellow Cameleon–Nano (YC-Nano) fused to α-actinin in order to localize to the Z disks. We find that, among four different YC-Nanos, α-actinin–YC-Nano140 is best suited for high-precision analysis of EC coupling and α-actinin–YC-Nano140 enables quantitative analyses of intracellular calcium transients and sarcomere dynamics at low and high temperatures, during spontaneous beating and with electrical stimulation. We use this tool to show that calcium transients are synchronized along the length of a myofibril. However, the averaging of SL along myofibrils causes a marked underestimate (∼50%) of the magnitude of displacement because of the different timing of individual SL changes, regardless of the absence or presence of positive inotropy (via β-adrenergic stimulation or enhanced actomyosin interaction). Finally, we find that β-adrenergic stimulation with 50 nM isoproterenol accelerated Ca2+ dynamics, in association with an approximately twofold increase in sarcomere lengthening velocity. We conclude that our experimental system has a broad range of potential applications for the unveiling molecular mechanisms of EC coupling in cardiomyocytes at the single sarcomere level.

Funder

Ministry of Education, Culture, Sports, Science and Technology of Japan

Japan Society for the Promotion of Science

Japan Heart Foundation

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3