Fusion of membranes during fertilization. Increases of the sea urchin egg's membrane capacitance and membrane conductance at the site of contact with the sperm.

Author:

McCulloh D H1,Chambers E L1

Affiliation:

1. Department of Physiology and Biophysics, University of Miami School of Medicine, Florida 33101.

Abstract

The early events of fertilization that precede and cause activation of an egg have not been fully elucidated. The earliest electrophysiological change in the sea urchin egg is a sperm-evoked increase of the egg's membrane conductance. The resulting depolarization facilitates entry of the fertilizing sperm and precludes the entry of supernumerary sperm. The sequence of the increase in the egg's membrane conductance, gamete membrane fusion, egg activation, and sperm entry, including causal relationships between these events, are not known. This study reports the use of whole egg voltage clamp and loose patch clamp to monitor simultaneously changes of membrane conductance and capacitance at the site of sperm-egg contact. Measurements were made during sperm-egg interactions where sperm entry readily proceeded or was precluded by maintaining the egg's membrane potential either at large, negative values or at positive values. Whenever the sperm evoked an increase of the egg's membrane conductance, that increase initiated abruptly, was localized to the site of sperm attachment, and was accompanied by a simultaneous abrupt increase of the membrane capacitance. This increase of capacitance indicated the establishment of electrical continuity between gametes (possibly fusion of the gametes' plasma membranes). If sperm entry was blocked by large negative membrane potentials, the capacitance cut off rapidly and simultaneously with a decrease of the membrane conductance, indicating that electrical continuity between gametes was disrupted. When sperm entry was precluded by positive membrane potentials, neither conductance nor capacitance increased, indicating that sperm entry was halted before the fusion of membranes. A second, smooth increase of capacitance was associated with the exocytosis of cortical granules near the sperm in eggs that were activated. Electrical continuity between the gametes always preceded activation of the egg, but transient electrical continuity between the gametes alone was not always sufficient to induce activation.

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3