Oxygen distribution and consumption in the cat retina during normoxia and hypoxemia.

Author:

Linsenmeier R A1,Braun R D1

Affiliation:

1. Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208-3107.

Abstract

Oxygen tension (PO2) was measured with microelectrodes within the retina of anesthetized cats during normoxia and hypoxemia (i.e., systemic hypoxia), and photoreceptor oxygen consumption was determined by fitting PO2 measurements to a model of steady-state oxygen diffusion and consumption. Choroidal PO2 fell linearly during hypoxemia, about 0.64 mmHg/mmHg decrease in arterial PO2 (PaO2). The choroidal circulation provided approximately 91% of the photoreceptors' oxygen supply under dark-adapted conditions during both normoxia and hypoxemia. In light adaptation the choroid supplied all of the oxygen during normoxia, but at PaO2's less than 60 mmHg the retinal circulation supplied approximately 10% of the oxygen. In the dark-adapted retina the decrease in choroidal PO2 caused a large decrease in photoreceptor oxygen consumption, from approximately 5.1 ml O2/100 g.min during normoxia to 2.6 ml O2/100 g.min at a PaO2 of 50 mmHg. When the retina was adapted to a rod saturating background, normoxic oxygen consumption was approximately 33% of the dark-adapted value, and hypoxemia caused almost no change in oxygen consumption. This difference in metabolic effects of hypoxemia in light and dark explains why the standing potential of the eye and retinal extracellular potassium concentration were previously found to be more affected by hypoxemia in darkness. Frequency histograms of intraretinal PO2 were used to characterize the oxygenation of the vascularized inner half of the retina, where the oxygen distribution is heterogeneous and simple diffusion models cannot be used. Inner retinal PO2 during normoxia was relatively low: 18 +/- 12 mmHg (mean and SD; n = 8,328 values from 36 profiles) in dark adaptation, and significantly lower, 13 +/- 6 mmHg (n = 4,349 values from 19 profiles) in light adaptation. Even in the dark-adapted retina, 30% of the values were less than 10 mmHg. The mean PO2 in the inner (i.e., proximal) half of the retina was well regulated during hypoxemia. In dark adaptation it was significantly reduced only at PaO2's less than 45 mmHg, and it was reduced less at these PaO2's in light adaptation.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 224 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3