Effects of barium and bicarbonate on glial cells of Necturus optic nerve. Studies with microelectrodes and voltage-sensitive dyes.

Author:

Astion M L1,Obaid A L1,Orkand R K1

Affiliation:

1. David Mahoney Institute of Neurological Science, University of Pennsylvania, Philadelphia 9104-6085.

Abstract

We have studied the effects of Ba++, a known K+ channel blocker, on the electrophysiological properties of the glial cells of Necturus optic nerve. The addition of Ba++ reversibly depolarized glial cells by 25-50 mV; the half maximal deplorization was obtained with a Ba++ concentration of approximately 0.3 mM. In the presence of Ba++, the sensitivity of the membrane to changes in K+ was reduced and there was evidence of competition between K+ and Ba++ for the K+ channel. These effects, which were accompanied by a large increase in the input resistance of the glial cells, indicate that Ba++ blocks the K+ conductance in glial cells of Necturus optic nerve. With the K+ conductance reduced, we were able to investigate the presence of other membrane conductances. We found that in the presence of Ba++, the addition of HCO3- caused a Na+-dependent hyperpolarization that was sensitive to the disulfonic stilbene SITS (4-acetamido-4'-isothiocyanostilbene-2, 2'-disulfonic acid). Removal of Na+ resulted in a HCO3- -dependent, SITS-sensitive depolarization. These results are consistent with the presence in the glial membrane of an electrogenic Na+/HCO3- cotransporter in which Na+, HCO3-, and net negative charge are transported in the same direction. In Cl- -free solutions, the Ba++-induced depolarization increased, suggesting a small permeability to Cl-. Using voltage-sensitive dyes and a photodiode array for multiple site optical recording, the distribution of potential changes in response to square pulses of intracellularly injected current were recorded before and after the addition of increased and the decay of amplitude as a function of distance decreased. Such results indicate that Ba++ increases the membrane resistance more than the resistance of the intercellular junctions.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3