Affiliation:
1. From the Department of Neurology and Neurosurgery, McGill University and Montreal Neurological Institute, Montréal, Québec, H3A 2B4 Canada
2. Dipartimento di Neurofisiologia Sperimentale, Istituto Nazionale Neurologico “Carlo Besta”, 20133 Milano, Italy
Abstract
The functional and biophysical properties of a sustained, or “persistent,” Na+ current (INaP) responsible for the generation of subthreshold oscillatory activity in entorhinal cortex layer-II principal neurons (the “stellate cells”) were investigated with whole-cell, patch-clamp experiments. Both acutely dissociated cells and slices derived from adult rat entorhinal cortex were used. INaP , activated by either slow voltage ramps or long-lasting depolarizing pulses, was prominent in both isolated and, especially, in situ neurons. The analysis of the gating properties of the transient Na+ current (INaT) in the same neurons revealed that the resulting time-independent “window” current (INaTW) had both amplitude and voltage dependence not compatible with those of the observed INaP , thus implying the existence of an alternative mechanism of persistent Na+-current generation. The tetrodotoxin-sensitive Na+ currents evoked by slow voltage ramps decreased in amplitude with decreasing ramp slopes, thus suggesting that a time-dependent inactivation was taking place during ramp depolarizations. When ramps were preceded by increasingly positive, long-lasting voltage prepulses, INaP was progressively, and eventually completely, inactivated. The V1/2 of INaP steady state inactivation was approximately −49 mV. The time dependence of the development of the inactivation was also studied by varying the duration of the inactivating prepulse: time constants ranging from ∼6.8 to ∼2.6 s, depending on the voltage level, were revealed. Moreover, the activation and inactivation properties of INaP were such as to generate, within a relatively broad membrane-voltage range, a really persistent window current (INaPW). Significantly, INaPW was maximal at about the same voltage level at which subthreshold oscillations are expressed by the stellate cells. Indeed, at −50 mV, the INaPW was shown to contribute to >80% of the persistent Na+ current that sustains the subthreshold oscillations, whereas only the remaining part can be attributed to a classical Hodgkin-Huxley INaTW. Finally, the single-channel bases of INaP slow inactivation and INaPW generation were investigated in cell-attached experiments. Both phenomena were found to be underlain by repetitive, relatively prolonged late channel openings that appeared to undergo inactivation in a nearly irreversible manner at high depolarization levels (−10 mV), but not at more negative potentials (−40 mV).
Publisher
Rockefeller University Press
Cited by
140 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献