Affiliation:
1. From the Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106
2. Department of Physiology, Loyola University Medical Center, Maywood, Illinois 60153
Abstract
We have examined the kinetics of whole-cell T-current in HEK 293 cells stably expressing the α1G channel, with symmetrical Na+i and Na+o and 2 mM Ca2+o. After brief strong depolarization to activate the channels (2 ms at +60 mV; holding potential −100 mV), currents relaxed exponentially at all voltages. The time constant of the relaxation was exponentially voltage dependent from −120 to −70 mV \documentclass[10pt]{article}\usepackage{amsmath}\usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy}\usepackage{mathrsfs}\usepackage[Euler]{upgreek}\pagestyle{empty}\oddsidemargin -1.0in\begin{document}\begin{equation*}({\mathrm{e-fold\;for}}\;31\;{\mathrm{mV}};\;{\mathrm{{\tau}}}\;=\;2.5\;{\mathrm{ms\;at}}\;-100\;{\mathrm{mV}})\end{equation*}\end{document}, but \documentclass[10pt]{article}\usepackage{amsmath}\usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy}\usepackage{mathrsfs}\usepackage[Euler]{upgreek}\pagestyle{empty}\oddsidemargin -1.0in\begin{document}\begin{equation*}{\mathrm{{\tau}}}\;=\;12{\raisebox{1mm}{\line(1,0){6}}}17\;{\mathrm{ms\;from}}-40\;{\mathrm{to}}\;+60\;{\mathrm{mV}}\end{equation*}\end{document}. This suggests a mixture of voltage-dependent deactivation (dominating at very negative voltages) and nearly voltage-independent inactivation. Inactivation measured by test pulses following that protocol was consistent with open-state inactivation. During depolarizations lasting 100–300 ms, inactivation was strong but incomplete (∼98%). Inactivation was also produced by long, weak depolarizations \documentclass[10pt]{article}\usepackage{amsmath}\usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy}\usepackage{mathrsfs}\usepackage[Euler]{upgreek}\pagestyle{empty}\oddsidemargin -1.0in\begin{document}\begin{equation*}({\mathrm{{\tau}}}\;=\;220\;{\mathrm{ms\;at}}\;-80\;{\mathrm{mV}};\;{\mathrm{V}}_{1/2}\;=\;-82\;{\mathrm{mV}})\end{equation*}\end{document}, which could not be explained by voltage-independent inactivation exclusively from the open state. Recovery from inactivation was exponential and fast \documentclass[10pt]{article}\usepackage{amsmath}\usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy}\usepackage{mathrsfs}\usepackage[Euler]{upgreek}\pagestyle{empty}\oddsidemargin -1.0in\begin{document}\begin{equation*}({\mathrm{{\tau}}}\;=\;85\;{\mathrm{ms\;at}}\;-100\;{\mathrm{mV}})\end{equation*}\end{document}, but weakly voltage dependent. Recovery was similar after 60-ms steps to −20 mV or 600-ms steps to −70 mV, suggesting rapid equilibration of open- and closed-state inactivation. There was little current at −100 mV during recovery from inactivation, consistent with ≤8% of the channels recovering through the open state. The results are well described by a kinetic model where inactivation is allosterically coupled to the movement of the first three voltage sensors to activate. One consequence of state-dependent inactivation is that α1G channels continue to inactivate after repolarization, primarily from the open state, which leads to cumulative inactivation during repetitive pulses.
Publisher
Rockefeller University Press
Cited by
94 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献