Affiliation:
1. From the Department of Physiology, Loyola University Chicago, Maywood, Illinois 60153-5500
Abstract
The inositol 1,4,5-trisphosphate receptor (InsP3R) forms ligand-regulated intracellular Ca2+ release channels in the endoplasmic reticulum of all mammalian cells. The InsP3R has been suggested to have six transmembrane regions (TMRs) near its carboxyl terminus. A TMR-deletion mutation strategy was applied to define the location of the InsP3R pore. Mutant InsP3Rs were expressed in COS-1 cells and single channel function was defined in planar lipid bilayers. Mutants having the fifth and sixth TMR (and the interceding lumenal loop), but missing all other TMRs, formed channels with permeation properties similar to wild-type channels (gCs = 284; gCa = 60 pS; PCa/PCs = 6.3). These mutant channels bound InsP3, but ligand occupancy did not regulate the constitutively open pore (Po > 0.80). We propose that a region of 191 amino acids (including the fifth and sixth TMR, residues 2398–2589) near the COOH terminus of the protein forms the InsP3R pore. Further, we have produced a constitutively open InsP3R pore mutant that is ideal for future site-directed mutagenesis studies of the structure–function relationships that define Ca2+ permeation through the InsP3R channel.
Publisher
Rockefeller University Press
Cited by
75 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献