Initial Coupling of Binding to Gating Mediated by Conserved Residues in the Muscle Nicotinic Receptor

Author:

Mukhtasimova Nuriya1,Free Chris1,Sine Steven M.1

Affiliation:

1. Receptor Biology Laboratory, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905

Abstract

We examined functional consequences of intrasubunit contacts in the nicotinic receptor α subunit using single channel kinetic analysis, site-directed mutagenesis, and structural modeling. At the periphery of the ACh binding site, our structural model shows that side chains of the conserved residues αK145, αD200, and αY190 converge to form putative electrostatic interactions. Structurally conservative mutations of each residue profoundly impair gating of the receptor channel, primarily by slowing the rate of channel opening. The combined mutations αD200N and αK145Q impair channel gating to the same extent as either single mutation, while αK145E counteracts the impaired gating due to αD200K, further suggesting electrostatic interaction between these residues. Interpreted in light of the crystal structure of acetylcholine binding protein (AChBP) with bound carbamylcholine (CCh), the results suggest in the absence of ACh, αK145 and αD200 form a salt bridge associated with the closed state of the channel. When ACh binds, αY190 moves toward the center of the binding cleft to stabilize the agonist, and its aromatic hydroxyl group approaches αK145, which in turn loosens its contact with αD200. The positional changes of αK145 and αD200 are proposed to initiate the cascade of perturbations that opens the receptor channel: the first perturbation is of β-strand 7, which harbors αK145 and is part of the signature Cys-loop, and the second is of β-strand 10, which harbors αD200 and connects to the M1 domain. Thus, interplay between these three conserved residues relays the initial conformational change from the ACh binding site toward the ion channel.

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3