Electrostatics in the Cytoplasmic Pore Produce Intrinsic Inward Rectification in Kir2.1 Channels

Author:

Yeh Shih-Hao1,Chang Hsueh-Kai1,Shieh Ru-Chi1

Affiliation:

1. Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan

Abstract

Inward rectifier K+ channels are important in regulating membrane excitability in many cell types. The physiological functions of these channels are related to their unique inward rectification, which has been attributed to voltage-dependent block. Here, we show that inward rectification can also be induced by neutral and positively charged residues at site 224 in the internal vestibule of tetrameric Kir2.1 channels. The order of extent of inward rectification is E224K mutant > E224G mutant > wild type in the absence of internal blockers. Mutating the glycines at the equivalent sites to lysines also rendered weak inward rectifier Kir1.1 channels more inwardly rectifying. Also, conjugating positively charged methanethiosulfonate to the cysteines at site 224 induced strong inward rectification, whereas negatively charged methanethiosulfonate alleviated inward rectification in the E224C mutant. These results suggest that charges at site 224 may control inward rectification in the Kir2.1 channel. In a D172N mutant, spermine interacting with E224 and E299 induced channel inhibition during depolarization but did not occlude the pore, further suggesting that a mechanism other than channel block is involved in the inward rectification of the Kir2.1 channel. In this and our previous studies we showed that the M2 bundle crossing and selectivity filter were not involved in the inward rectification induced by spermine interacting with E224 and E299. We propose that neutral and positively charged residues at site 224 increase a local energy barrier, which reduces K+ efflux more than K+ influx, thereby producing inward rectification.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3