Permeation and interaction of divalent cations in calcium channels of snail neurons.

Author:

Byerly L,Chase P B,Stimers J R

Abstract

We have studied the current-carrying ability and blocking action of various divalent cations in the Ca channel of Lymnaea stagnalis neurons. Changing the concentration or species of the permeant divalent cation shifts the voltage dependence of activation of the Ca channel current in a manner that is consistent with the action of the divalent cation on an external surface potential. Increasing the concentration of the permeant cation from 1 to 30 mM produces a twofold increase in the maximum Ca current and a fourfold increase in the maximum Ba current; the maximum Ba current is twice the size of the maximum Ca current for 10 mM bulk concentration. Correcting for the changing surface potential seen by the gating mechanism, the current-concentration relation is almost linear for Ba2+, and shows only moderate saturation for Ca2+; also, Ca2+, Ba2+, and Sr2+ are found to pass through the channel almost equally well. These conclusions are obtained for either of two assumptions: that the mouth of the channel sees (a) all or (b) none of the surface potential seen by the gating mechanism. Cd2+ blocks Lymnaea and Helix Ca channels at concentrations 200 times smaller than those required for Co2+ or Ni2+. Ca2+ competes with Cd2+ for the blocking site; Ba2+ binds less strongly than Ca2+ to this site. Mixtures of Ca2+ and Ba2+ produce an anomalous mole fraction effect on the Ca channel current. After correction for the changing surface potential (using either assumption), the anomalous mole fraction effect is even more prominent, which suggests that Ba2+ blocks Ca current more than Ca2+ blocks Ba current.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 98 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3