The Luminosity Curve of the Deuteranomalous Fovea

Author:

Alpern Mathew1,Torii Shuko1

Affiliation:

1. From the Department of Ophthalmology, the University of Michigan, Ann Arbor, Michigan 48104. Dr. Torii is on leave from the Tokyo University of Agriculture and Technology, Tokyo, Japan

Abstract

Analogous to protans, the two types of deutan color-defectives—the dichromats (deuteranopes) and the anomalous trichromats (deuteranomalous)—do not differ in spectral sensitivity in the red-green range at threshold (either in the dark or against bright colored backgrounds). However, luminosity curves obtained by heterochromatic brightness matching show the latter to be slightly more sensitive in the blue-green, and slightly less so in the red, than the former. Experiment proves that these differences are due (at least in part) to contributions of cones containing the deuteranomalous anomalous pigment which are missing from the deuteranope's eye. The absorption spectrum of the anomalous pigment can be inferred with assumptions (analogous to those already made with protanomalous trichromats) about how the different cone mechanisms pool their responses to yield luminosity. Two alternatives thus revealed are (a) the normal red pigment in dilute solution or (b) a spectrum very similar to that of the normal red pigment but shifted slightly toward the short wave end of the spectrum. Since the spectrum inferred by (a) has the same λmax as the normal red pigment, (a) predicts that deuteranomalous observers will require a negative red primary when matching monochromatic lights of wavelengths near the λmax. This is not observed.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3