THE ACCUMULATION OF ELECTROLYTES

Author:

Jacques A. G.1,Osterhout W. J. V.1

Affiliation:

1. From the Laboratories of The Rockefeller Institute for Medical Research

Abstract

It would be natural to suppose that potassium enters Valonia as KCl since it appears in this form in the sap. We find, however, that on this basis we cannot predict the behavior of potassium in any respect. But we can readily do so if we assume that it penetrates chiefly as KOH. We may then say that under normal conditions potassium enters the cell because the ionic activity product (K) (OH) is greater outside than inside. This hypothesis.leads to the following predictions: 1. When the product (K) (OH) becomes greater inside (because the inside concentration of OH- rises, or the outside concentration of K+ or of OH- falls) potassium should leave the cell, though sodium continues to enter. Previous experiments, and those in this paper, indicate that this is the case. 2. Increasing the pH value of the sea water should increase the rate of entrance of potassium, and vice versa. This appears to be shown by the results described in the present paper. It appears that photosynthesis increases the rate of entrance of potassium by increasing the pH value just outside the protoplasm. In darkness there is little or no growth or absorption of electrolytes. The entrance of potassium by ionic exchange (K+ exchanged for H+ produced in the cell), the ions passing as such through the protoplasmic surface, does not seem to be important.

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3