The Electrical Activity of Embryonic Chick Heart Cells Isolated in Tissue Culture Singly or in Interconnected Cell Sheets

Author:

DeHaan Robert L.1,Gottlieb Sheldon H.1

Affiliation:

1. From the Department of Embryology, Carnegie Institution of Washington, Baltimore, Maryland 21210

Abstract

Embryonic chick heart cells were cultured on a plastic surface in sparse sheets of 2–50 cells mutually in contact, or isolated as single cells. Conditions are described which permitted conjoint cells to be impaled with recording microelectrodes with 75% success, and isolated single cells with 8% success. It is proposed that cells in electrical contact with neighbors are protected from irreversible damage by the penetrating electrode, by a flow of ions or other substances from connected cells across low-impedance intercellular junctions. Action potentials recorded from conjoint and isolated single cells were similar in form and amplitude. The height or shape of the action potential thus appears not to depend upon spatial relationships of one cell to another. As the external potassium concentration was increased from 1.3 mM to 6 mM, cells became hyperpolarized while the afterhyperpolarization was reduced. At higher potassium levels, the afterhyperpolarization disappeared, the slope of the slow diastolic depolarization decreased, and resting potential fell along a linear curve with a slope of 61 mv per 10-fold increase in potassium. In pacemaker cells the diastolic depolarization consists of two phases: (a) recovery from the afterpotential of the previous action potential and (b) the pacemaker potential. These phases are separated by a point of inflection, and represent manifestations of different mechanisms. Evidence is presented that it is the point of inflection (PBA) rather than the point of maximal diastolic potential, that should be taken as the resting potential.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3