The State of Water in Human and Dog Red Cell Membranes

Author:

Vieira F. L.1,Sha'afi R. I.1,Solomon A. K.1

Affiliation:

1. From the Biophysical Laboratory, Harvard Medical School, Boston, Massachusetts 02115. Please send reprint requests to the Biophysical Laboratory, Harvard Medical School.

Abstract

The apparent activation energy for the water diffusion permeability coefficient, Pd, across the red cell membrane has been found to be 4.9 ± 0.3 kcal/mole in the dog and 6.0 ± 0.2 kcal/mole in the human being over the temperature range, 7° to 37°C. The apparent activation energy for the hydraulic conductivity, Lp, in dog red cells has been found to be 3.7 ± 0.4 kcal/mole and in human red cells, 3.3 ± 0.4 kcal/mole over the same temperature range. The product of Lp and the bulk viscosity of water, η, was independent of temperature for both dog and man which indicates that the geometry of the red cell membrane is not temperature-sensitive over our experimental temperature range in either species. In the case of the dog, the apparent activation energy for diffusion is the same as that for self-diffusion of water, 4.6–4.8 kcal/mole, which indicates that the process of water diffusion across the dog red cell membrane is the same as that in free solution. The slightly, but significantly, higher activation energy for water diffusion in human red cells is consonant with water-membrane interaction in the narrower equivalent pores characteristic of these cells. The observation that the apparent activation energy for hydraulic conductivity is less than that for water diffusion across the red cell membrane is characteristic of viscous flow and suggests that the flow of water across the membranes of these red cells under an osmotic pressure gradient is a viscous process.

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3