Electrical Transmission among Neurons in the Buccal Ganglion of a Mollusc, Navanax inermis

Author:

Levitan H.1,Tauc L.1,Segundo J. P.1

Affiliation:

1. From the Department of Anatomy and Brain Research Institute, University of California, Los Angeles, California 90024, and Laboratoire de Neurophysiologie Cellulaire, Centre d'Etudes de Physiologie Nerveuse du Centre National de la Recherche Scientifique, Paris, France. Requests for reprints should be sent to Dr. Levitan, National Institute of Mental Health, Bethesda, Maryland 20014.

Abstract

The opisthobranch mollusc, Navanax, is carnivorous and cannibalistic. Prey are swallowed whole by way of a sudden expansion of the pharynx. The buccal ganglion which controls this sucking action was isolated and bathed in seawater. Attention was focused upon 10 identifiable cells visible on the ganglion's rostral side. Two cells were observed simultaneously, and each was penetrated with two glass microelectrodes, one for polarizing the membrane and the other for recording membrane potential variations. The coupling coefficients for direct current flow and action potentials of several identified cells were tabulated. Attenuation was essentially independent of the direction of current flow, but depended upon the relative size of the directly and indirectly polarized cells. The attenuation of subthreshold sinusoidally varying voltages increased with frequency above about 1 Hz. The coupling coefficient for spikes was lower than for DC due to greater high frequency attenuation. There is considerable similarity in the spontaneous PSP's of all cells, which is not due to the electrical coupling but to input from a common source. The 10 cells were not chemically interconnected but some were electrically connected to interneurons which fed back chemically mediated PSP's. The feedback can be negative or positive depending upon the membrane potential of the postsynaptic cell. We conclude that electrical coupling among the 10 cells plays a minor role in sudden pharyngeal contractions but that the dual electrical-chemical coupling with interneurons may be important in this respect.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 85 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamics of the Inferior Olive Oscillator and Cerebellar Function;Handbook of the Cerebellum and Cerebellar Disorders;2021-12-05

2. The History of the Synapse;The Anatomical Record;2020-04-23

3. Dynamics of the Inferior Olive Oscillator and Cerebellar Function;Handbook of the Cerebellum and Cerebellar Disorders;2019

4. Electrical coupling and its channels;Journal of General Physiology;2018-11-02

5. Electrical coupling between Aplysia bag cell neurons: characterization and role in synchronous firing;Journal of Neurophysiology;2014-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3