Affiliation:
1. Department of Ophthalmology, Department of Biochemistry and Molecular Biology, Department of Neuroscience and Physiology, and SUNY Eye Institute, State University of New York Upstate Medical University, Syracuse, NY 13210
2. Department of Chemical Engineering, Lehigh University, Bethlehem, PA 18015
Abstract
G protein–coupled receptor (GPCR) cascades rely on membrane protein diffusion for signaling and are generally found in spatially constrained subcellular microcompartments. How the geometry of these microcompartments impacts cascade activities, however, is not understood, primarily because of the inability of current live cell–imaging technologies to resolve these small structures. Here, we examine the dynamics of the GPCR rhodopsin within discrete signaling microcompartments of live photoreceptors using a novel high resolution approach. Rhodopsin fused to green fluorescent protein variants, either enhanced green fluorescent protein (EGFP) or the photoactivatable PAGFP (Rho-E/PAGFP), was expressed transgenically in Xenopus laevis rod photoreceptors, and the geometries of light signaling microcompartments formed by lamellar disc membranes and their incisure clefts were resolved by confocal imaging. Multiphoton fluorescence relaxation after photoconversion experiments were then performed with a Ti–sapphire laser focused to the diffraction limit, which produced small sub–cubic micrometer volumes of photoconverted molecules within the discrete microcompartments. A model of molecular diffusion was developed that allows the geometry of the particular compartment being examined to be specified. This was used to interpret the experimental results. Using this unique approach, we showed that rhodopsin mobility across the disc surface was highly heterogeneous. The overall relaxation of Rho-PAGFP fluorescence photoactivated within a microcompartment was biphasic, with a fast phase lasting several seconds and a slow phase of variable duration that required up to several minutes to reach equilibrium. Local Rho-EGFP diffusion within defined compartments was monotonic, however, with an effective lateral diffusion coefficient Dlat = 0.130 ± 0.012 µm2s−1. Comparison of rhodopsin-PAGFP relaxation time courses with model predictions revealed that microcompartment geometry alone may explain both fast local rhodopsin diffusion and its slow equilibration across the greater disc membrane. Our approach has for the first time allowed direct examination of GPCR dynamics within a live cell signaling microcompartment and a quantitative assessment of the impact of compartment geometry on GPCR activity.
Publisher
Rockefeller University Press
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献