Differential effects of pertussis toxin on the muscarinic regulation of Ca2+ and K+ currents in frog cardiac myocytes.

Author:

Li Y1,Hanf R1,Otero A S1,Fischmeister R1,Szabo G1

Affiliation:

1. Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville 22908.

Abstract

The ability of acetylcholine (ACh) to inhibit beta-agonist stimulated calcium current was compared to its ability to activate the inwardly rectifying potassium current IK(ACh) in frog atrial myocytes. As suggested by previous studies, ACh inhibited the calcium current at concentrations (EC50 = 8 nM) significantly lower than those required for the activation of IK(ACh) (EC50 = 101 nM). The pharmacological profiles of the two responses suggest that despite the differences in agonist sensitivity, both are mediated by the same (m2) type of muscarinic receptors. Intracellular application of GDP beta S, an inhibitor of G protein function, completely abolished both responses, implying that both actions of ACh are coupled to effectors by G proteins. In contrast, intracellular application of pertussis toxin (PTX) shifted to higher concentrations (EC50 = 170 nM) but did not abolish inhibition of the calcium current by ACh even though the block of the IK(ACh) response was complete. Increasingly large PTX concentrations and/or prolonged PTX treatments revealed a limiting, PTX-resistant inhibitory component that appears to be mediated by a PTX-insensitive G protein distinct from that mediating IK(ACh). For the PTX-sensitive components, the different agonist dependencies of IK(ACh) activation and calcium current inhibition may imply that different G proteins mediate each response although alternate possibilities involving the same G protein either functionally sequestered and/or differentially affected by interactions with effectors, can not be ruled out.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3