The relation between dicarbocyanine dye fluorescence and the membrane potential of human red blood cells set at varying Donnan equilibria.

Author:

Freedman J C,Hoffman J F

Abstract

The fluorescence, F, of two dicarbocyanine dyes, diS-C3(5) and diI-C3(5), depends both on the membrane potential, E, and on the intracellular pH, pHc, or human red blood cells. Compositions of isotonic media have been devised in which the equilibrium Donnan potential, E, varies at constant pHc and in which pHc varies at constant E. Dye fluorescence measurements in these suspensions yield calibrations of +1.7 % delta F/mV for diS-C3(5) and +0.6 % delta F/mV for diI-C3 (5). While pHo does not affect F of either dye, changes in pHc of 0.1 unit at constant E cause changes of F equivalent to those induced by 2--3mV. Based on these results, a method is given for estimating changes in E from dye fluorescence in experiments in which E and pHc co-vary. The relation of F to E also depends in a complex way on the type and concentration of cells and dye, and the wavelengths employed. The equilibrium calibration of dye fluorescence, when applied to diffusion potentials induced by 1 microM valinomycin, yields a value for the permeability ratio, PK.VAL/PCl, of 20 +/- 5, in agreement with previous estimates by other methods. The calibration of F is identical both for diffusion potentials and for equilibrium potentials, implying that diC-C3(5) responds to changes in voltage independently of ionic fluxes across the red cell membrane. Changes in the absorption spectra of dye in the presence of red cells in response to changes in E show that formation of nonfluorescent dimers contributes to fluorescence quenching of diS-C3(5). In contrast, only a hydrophobic interaction of dye monomers need be considered for diI-C3(5), indicating the occurrence of a simpler mechanism of fluorescence quenching.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3