THE EFFECT OF ULTRAVIOLET LIGHT ON THE PRODUCTION OF BACTERIAL VIRUS PROTEIN

Author:

Watanabe Itaru1

Affiliation:

1. From the Virus Laboratory, University of California, Berkeley

Abstract

The amount of phage-specific protein in T2-infected bacteria growing in a medium containing radiosulfur, S35, has been studied by measuring the radioactivity in specific antiphage serum precipitates of lysates. In the course of normal infection, non-infective phage antigen has been found to make its first intracellular appearance shortly before the end of the eclipse period, in agreement with the findings of Maaløe and Symonds with phage T4. No such phage antigen is produced either in bacteria infected with UV-inactivated T2 or in T2-infected bacteria whose survival as an infective center has been destroyed by UV irradiation during the early stages of the eclipse period. If the infected bacteria are UV-irradiated only at later stages of the eclipse period however, then phage antigenic protein continues to be synthesized in those infected cells in which DNA synthesis and, a fortiori, production of infective progeny have been almost completely suppressed. It is concluded from these results that once the mechanism for formation of phage-specific protein has been established within the infected cell under the influence of the parental DNA, synthesis of phage-specific protein can continue independently of the synthesis of phage DNA. The possibility that the phage DNA controls the specificity of the phage protein indirectly through substances other than DNA is discussed.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3