POTASSIUM TRANSPORT IN HUMAN ERYTHROCYTES: EVIDENCE FOR A THREE COMPARTMENT SYSTEM

Author:

Solomon A. K.1,Gold G. Lennard1

Affiliation:

1. From the Biophysical Laboratory of Harvard Medical School, Boston

Abstract

Whole human blood is incubated for periods of ½ to 3 hours with K42 at 37°C. At the close of this period, called pre-incubation, the plasma is removed from the cells and the cells, now become radioactive, are again incubated in a mixture of plasma and buffer for periods of up to 10 additional hours. The time course of the K42 activity of the incubating medium is followed. Characteristically, after 2 hours of pre-incubation, the activity in the medium rises to a peak about 1 and ½ hours after resuspension, and then falls slowly until at 10 hours it is very close to its initial value at the beginning of the resuspension interval. This transient rise in K42 activity in the medium is taken to indicate that the red cell does not consist of a single uniform K compartment, but contains at least two compartments. Thus one cellular compartment contains a reservoir of high specific activity K which provides the specific activity gradient necessary to drive the K42 content of the medium to its transient peak. Experiments with Na indicate that its behavior in this respect is unlike that of K. The experimental data are matched to a simple model system which is capable of theoretical analysis with the aid of an analogue computer. The model system, whose characteristics agree fairly well with those observed experimentally on red cell suspensions, comprises two intracellular compartments, one containing 2.35 m.eq. K/liter blood, and the other 44.1 m.eq. K/liter blood. The plasma K content is 2.64 m.eq./liter blood. The flux between plasma and the smaller intracellular compartment is 0.65 m.eq. K/liter blood hour; that between the smaller and the larger intracellular compartment, 1.77 m.eq. K/liter blood hour; and that between the larger intracellular compartment and the plasma is 0.34 m.eq. K/liter blood hour.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3