Characteristics of the Amino Acid Transport System in the Mucosal Border of Rabbit Ileum

Author:

Hajjar Jean Jacques1,Curran Peter F.1

Affiliation:

1. From the Department of Physiology, Yale University School of Medicine, New Haven, Connecticut 06510

Abstract

The specificity of the neutral amino acid transport system in the brush border was examined by studying the ability of amino acid analogues to inhibit the unidirectional influx of phenylalanine from mucosal solution into the cells. Effects were evaluated in terms of the affinity of various substrates for the amino acid site in the transport system. The affinity of amino acids for the site was proportional to the number of carbon atoms in the side chain. Electron-withdrawing substituents in the ring of phenylalanine increased affinity and electron-releasing groups decreased affinity. Removal of the α-amino group from phenylalanine decreased affinity by a factor of approximately 50 and removal of the carboxyl group decreased affinity 12-fold. Effects on affinity of variations in the side chain of the amino acid can be comparable in magnitude to that of the carboxyl group. The effect of sodium ion on the transport system appears to be similar for all compounds tested.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Amino Acid Transport Across the Mammalian Intestine;Comprehensive Physiology;2018-12-13

2. On the Function of the γ-Glutamyl Cycle in the Transport of Amino Acids and Peptides;Ciba Foundation Symposium 50 - Peptide Transport and Hydrolysis;2008-05-30

3. Amino Acid Transport Across Mammalian Intestinal and Renal Epithelia;Physiological Reviews;2008-01

4. The molecular basis of neutral aminoacidurias;Pflügers Archiv - European Journal of Physiology;2005-07-29

5. Characterization of mouse amino acid transporter B0AT1 (slc6a19);Biochemical Journal;2005-07-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3