Affiliation:
1. Department of Neuroscience
2. Department of Ophthalmology
3. Department of Molecular Biology and Genetics,
4. Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205
Abstract
Bestrophins are a newly discovered family of Cl− channels, some members of which are activated by intracellular Ca2+. So far, all studies were carried out with whole-cell recordings from plasmid-transfected cultured cells, so it is unclear whether Ca2+ activates bestrophin through a metabolic mechanism or in a more direct way. We report here experiments that addressed this question with excised, inside-out membrane patches. We chose human bestrophin-4 (hBest4) for heterologous expression because it gave particularly large Cl− currents when expressed, thus allowing detection even in excised membrane patches. hBest4 gave a negligible Cl− current in a Ca2+-free solution on the cytoplasmic (bath) side, but produced a Cl− current that was activated by Ca2+ in a dose-dependent manner, with a K1/2 of 230 nM. Thus, Ca2+ appears to activate the bestrophin Cl− channel without going through a freely diffusible messenger or through protein phosphorylation. Because the activation and deactivation kinetics were very slow, however, we cannot exclude the involvement of a membrane-associated messenger.
Publisher
Rockefeller University Press
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献