Muscle Chloride Channel Dysfunction in Two Mouse Models of Myotonic Dystrophy

Author:

Lueck John D.1,Mankodi Ami2,Swanson Maurice S.3,Thornton Charles A.2,Dirksen Robert T.1

Affiliation:

1. Department of Physiology and Pharmacology, University of Rochester, Rochester, NY 14642

2. Department of Neurology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642

3. Department of Molecular Genetics and Microbiology and the Genetic Institute, Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL 32610

Abstract

Muscle degeneration and myotonia are clinical hallmarks of myotonic dystrophy type 1 (DM1), a multisystemic disorder caused by a CTG repeat expansion in the 3′ untranslated region of the myotonic dystrophy protein kinase (DMPK) gene. Transgenic mice engineered to express mRNA with expanded (CUG)250 repeats (HSALR mice) exhibit prominent myotonia and altered splicing of muscle chloride channel gene (Clcn1) transcripts. We used whole-cell patch clamp recordings and nonstationary noise analysis to compare and biophysically characterize the magnitude, kinetics, voltage dependence, and single channel properties of the skeletal muscle chloride channel (ClC-1) in individual flexor digitorum brevis (FDB) muscle fibers isolated from 1–3-wk-old wild-type and HSALR mice. The results indicate that peak ClC-1 current density at −140 mV is reduced >70% (−48.5 ± 3.6 and −14.0 ± 1.6 pA/pF, respectively) and the kinetics of channel deactivation increased in FDB fibers obtained from 18–20- d-old HSALR mice. Nonstationary noise analysis revealed that the reduction in ClC-1 current density in HSALR FDB fibers results from a large reduction in ClC-1 channel density (170 ± 21 and 58 ± 11 channels/pF in control and HSALR fibers, respectively) and a modest decrease in maximal channel open probability(0.91 ± 0.01 and 0.75 ± 0.03, respectively). Qualitatively similar results were observed for ClC-1 channel activity in knockout mice for muscleblind-like 1 (Mbnl1ΔE3/ΔE3), a second murine model of DM1 that exhibits prominent myotonia and altered Clcn1 splicing (Kanadia et al., 2003). These results support a molecular mechanism for myotonia in DM1 in which a reduction in both the number of functional sarcolemmal ClC-1 and maximal channel open probability, as well as an acceleration in the kinetics of channel deactivation, results from CUG repeat–containing mRNA molecules sequestering Mbnl1 proteins required for proper CLCN1 pre-mRNA splicing and chloride channel function.

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3