Depolarization-induced Calcium Responses in Sympathetic Neurons: Relative Contributions from Ca2+ Entry, Extrusion, ER/Mitochondrial Ca2+ Uptake and Release, and Ca2+ Buffering

Author:

Patterson Michael1,Sneyd James2,Friel David D.1

Affiliation:

1. Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106

2. Department of Mathematics, University of Auckland, Auckland, New Zealand

Abstract

Many models have been developed to account for stimulus-evoked [Ca2+] responses, but few address how responses elicited in specific cell types are defined by the Ca2+ transport and buffering systems that operate in the same cells. In this study, we extend previous modeling studies by linking the time course of stimulus-evoked [Ca2+] responses to the underlying Ca2+ transport and buffering systems. Depolarization-evoked [Ca2+]i responses were studied in sympathetic neurons under voltage clamp, asking how response kinetics are defined by the Ca2+ handling systems expressed in these cells. We investigated five cases of increasing complexity, comparing observed and calculated responses deduced from measured Ca2+ handling properties. In Case 1, [Ca2+]i responses were elicited by small Ca2+ currents while Ca2+ transport by internal stores was inhibited, leaving plasma membrane Ca2+ extrusion intact. In Case 2, responses to the same stimuli were measured while mitochondrial Ca2+ uptake was active. In Case 3, responses were elicited as in Case 2 but with larger Ca2+ currents that produce larger and faster [Ca2+]i elevations. Case 4 included the mitochondrial Na/Ca exchanger. Finally, Case 5 included ER Ca2+ uptake and release pathways. We found that [Ca2+]i responses elicited by weak stimuli (Cases 1 and 2) could be quantitatively reconstructed using a spatially uniform model incorporating the measured properties of Ca2+ entry, removal, and buffering. Responses to strong depolarization (Case 3) could not be described by this model, but were consistent with a diffusion model incorporating the same Ca2+ transport and buffering descriptions, as long as endogenous buffers have low mobility, leading to steep radial [Ca2+]i gradients and spatially nonuniform Ca2+ loading by mitochondria. When extended to include mitochondrial Ca2+ release (Case 4) and ER Ca2+ transport (Case 5), the diffusion model could also account for previous measurements of stimulus-evoked changes in total mitochondrial and ER Ca concentration.

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3