Rectifying conductance substates in a large conductance Ca(2+)-activated K+ channel: evidence for a fluctuating barrier mechanism.

Author:

Moss G W1,Moczydlowski E1

Affiliation:

1. Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.

Abstract

In this study, we investigated the mechanism underlying the production of inwardly rectifying subconductance states induced in large conductance Ca(2+)-activated K+ channels (maxi K(Ca) channels) by the small, homologous proteins, bovine pancreatic trypsin inhibitor (BPTI) and dendrotoxin-I (DTX). Low-resolution bilayer recordings of BPTI-induced substates display excess noise that is well described by a beta-distribution characteristic of a filtered, two-state process. High-resolution patch recordings of maxi K(Ca) channels from vascular smooth muscle cells confirm that the BPTI-induced substate is actually comprised of rapid, voltage-dependent transitions between the open state and a nearly closed state. Patch recordings of DTX-induced substates also exhibit excess noise consistent with a similar two-state fluctuation process that occurs at rates faster than those measured for the BPTI-induced substate. The results indicate that these examples of ligand-induced substates originate by a fluctuating barrier mechanism that is similar to one class of models proposed by Dani, J.A., and J.A. Fox (1991. J. Theor. Biol. 153: 401-423) to explain subconductance behavior of ion channels. To assess the general impact of such rapid fluctuations on the practical measurement of unitary currents by amplitude histograms, we simulated single-channel records for a linear, three-state scheme of C (closed)-O(open)-S(substate). This simulation defines a range of transition rates relative to filter frequency where rapid fluctuations can lead to serious underestimation of actual unitary current levels. On the basis of these experiments and simulations, we conclude that fluctuating barrier processes and open channel noise may play an important physiological role in the modulation of ion permeation.

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3