Unitary behavior of skeletal, cardiac, and chimeric L-type Ca2+ channels expressed in dysgenic myotubes.

Author:

Dirksen R T1,Beam K G1

Affiliation:

1. Department of Anatomy and Neurobiology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins 80523, USA. RDirksen@Vines.ColoState.edu

Abstract

Skeletal and cardiac dihydropyridine receptors function both as voltage-dependent L-type calcium channels (L-channels) and as critical proteins that trigger calcium release from the sarcoplasmic reticulum in muscle. In spite of these similarities, skeletal L-channels exhibit a markedly slower activation rate than cardiac L-channels. We investigated the mechanisms underlying this difference by comparing the unitary behavior of L-channels in cell-attached patches of dysgenic myotubes expressing skeletal, cardiac, or chimeric dihydropyridine receptors. Our results demonstrate that ensemble averages activate rapidly for the purely cardiac dihydropyridine receptor and approximately five times more slowly for L-channels attributable to the purely skeletal dihydropyridine receptor or a chimeric dihydropyridine receptor in which only the first internal repeat and all of the putative intracellular loops are of skeletal origin. All of the constructs studied similarly exhibit a brief (2-ms) and a long (> or = 15-ms) open time in the presence of Bay K 8644, neither of which depend significantly on voltage. In the absence of Bay K 8644, the fraction of total open events is markedly shifted to the briefer open time without altering the rate of ensemble activation. Closed time analysis of L-channels with cardiac-like, rapid activation (recorded in the presence of dihydropyridine agonist) reveals both a brief (approximately 1-ms) closed time and a second, voltage-dependent, long-lasting closed time. The time until first opening after depolarization is three to six times faster for rapidly activating L-channels than for slowly activating L-channels and depends strongly on voltage for both types of channels. The results suggest that a voltage-dependent, closed-closed transition that is fast in cardiac L-channels and slow in skeletal L-channels can account for the difference in activation rate between these two channels.

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3