The Permeability of Thin Lipid Membranes to Bromide and Bromine

Author:

Gutknecht John1,Bruner L. J.1,Tosteson D. C.1

Affiliation:

1. From the Department of Physiology and Pharmacology, Duke University Medical Center, Durham, North Carolina 27710.

Abstract

Thin lipid (optically black) membranes were made from sheep red cell lipids dissolved in n-decane. The flux of Br across these membranes was measured by the use of tracer 82Br. The unidirectional flux of Br (in 50–100 mM NaBr) was 1–3 x 10-12 mole/cm2sec. This flux is more than 1000 times the flux predicted from the membrane electrical resistance (>108 ohm-cm2) and the transference number for Br- (0.2–0.3), which was estimated from measurements of the zero current potential difference. The Br flux was not affected by changes in the potential difference imposed across the membrane (±60 mv) or by the ionic strength of the bathing solutions. However, the addition of a reducing agent, sodium thiosulfate (10-3 M), to the NaBr solution bathing the membrane caused a 90% reduction in the Br flux. The inhibiting effect of S2O3= suggests that the Br flux is due chiefly to traces of Br2 in NaBr solutions. As expected, the addition of Br2 to the NaBr solutions greatly stimulated the Br flux. However, at constant Br2 concentration, the Br flux was also stimulated by increasing the Br- concentration, in spite of the fact that the membrane was virtually impermeable to Br-. Finally, the Br flux appeared to saturate at high Br2 concentrations, and the saturation value was roughly proportional to the Br- concentration. These results can be explained by a model which assumes that Br crosses the membrane only as Br2 but that rapid equilibration of Br between Br2 and Br- occurs in the unstirred layers of aqueous solution bathing the two sides of the membrane. A consequence of the model is that Br- "facilitates" the diffusion of Br across the unstirred layers.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Role of Carbonic Anhydrases and Inhibitors in Acid–Base Physiology: Insights from Mathematical Modeling;International Journal of Molecular Sciences;2019-08-06

2. Facilitated Diffusion and Membrane Permeation of Fatty Acid in Albumin Solutions;Annals of Biomedical Engineering;2000-03

3. Visualization of the Reaction Layer in the Immediate Membrane Vicinity;Archives of Biochemistry and Biophysics;1996-09

4. Hepatic uptake of protein-bound ligands: effect of an unstirred Disse space;American Journal of Physiology-Gastrointestinal and Liver Physiology;1996-05-01

5. Mechanisms of Flagellar Excision;Experimental Cell Research;1993-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3