Effect of membrane polarization on contractile threshold and time course of prolonged contractile responses in skeletal muscle fibers.

Author:

Caputo C,Bolaños P,Gonzalez G F

Abstract

Short muscle fibers (less than 1.5 mm) from the m. lumbricalis IV digiti of Rana pipiens were voltage-clamped at -100 mV with a two-microelectrode technique, in normal Ringer's solution containing 10(-6) g/ml tetrodotoxin. The activation curve relating peak tension to membrane potential could be shifted toward more negative or less negative potential values by hyperpolarizing or depolarizing the fiber membrane to -130, -120, or -70 mV, respectively, which indicates that contractile threshold depends on the fiber membrane potential. Long (greater than 5 s) depolarizing (90 mV) pulses induce prolonged contractile responses showing a plateau and a rapid relaxation phase similar to K contractures. Conditioning hyperpolarizations prolong the time course of these responses, while conditioning depolarizations shorten it. The shortening of the response time course, which results in a decrease of the area under the response, is dependent on the amplitude and duration of the conditioning depolarization. Depending on the magnitude and duration, a conditioning depolarization may also reduce peak tension. When the area under the response is reduced by 50%, the level of membrane potential also affects the repriming rate. During repriming, peak tension is restored before the contracture area. Thus, when peak tension is reprimed to 80%, the area is reprimed by 50% of its normal value. Repriming has a marked temperature dependency with a Q10 higher than 4. These results are compatible with the idea that an inactivation process, voltage and time dependent, regulates the release of calcium from the sarcoplasmic reticulum during these responses.

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3