The human erythrocyte anion transport protein, band 3. Characterization of exofacial alkaline titratable groups involved in anion binding/translocation.

Author:

Bjerrum P J1

Affiliation:

1. Department of Clinical Chemistry, Herlev Hospital, University of Copenhagen, Denmark.

Abstract

Chloride self-exchange across the human erythrocyte membrane at alkaline extracellular pH (pHO) and constant neutral intracellular pH (pH(i)) can be described by an exofacial deprotonatable reciprocating anion binding site model. The conversion of the transport system from the neutral to the alkaline state is related to deprotonation of a positively charged ionic strength- and substrate-sensitive group. In the absence of substrate ions ([ClO] = 0) the group has a pK of approximately 9.4 at constant high ionic strength (equivalent to approximately 150 mM KCl) and a pK of approximately 8.7 at approximately zero ionic strength. The alkaline ping-pong system (examined at constant high ionic strength) demonstrates outward recruitment of the binding sites with an asymmetry factor of approximately 0.2, as compared with the inward recruitment of the transport system at neutral pHO with an asymmetry factor of approximately 10. The intrinsic half-saturation constant for chloride binding, with [Cli] = [Clo], increased from approximately 30 mM at neutral to approximately 110 mM at alkaline pHO. The maximal transport rate was a factor of approximately 1.7 higher at alkaline pHO. This increase explains the stimulation of anion transport, the "modifier hump," observed at alkaline pHO. The translocation of anions at alkaline pHO was inhibited by deprotonation of another substrate-sensitive group with an intrinsic pK of approximately 11.3. This group together with the group with a pK of approximately 9.4 appear to form the essential part of the exofacial anion binding site. The effect of extracellular iodide inhibition on chloride transport as a function of pHO could, moreover, be simulated if three extracellular iodide binding constants were included in the model: namely, a competitive intrinsic iodide binding constant of approximately 1 mM in the neutral state, a self-inhibitor binding constant of approximately 120 mM in the neutral state, and a competitive intrinsic binding constant of approximately 38 mM in the alkaline state.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3