Receptive field properties of rod-driven horizontal cells in the skate retina.

Author:

Qian H1,Ripps H1

Affiliation:

1. Department of Ophthalmology and Visual Sciences, Lions of Illinois Eye Research Institute, Chicago.

Abstract

The large receptive fields of retinal horizontal cells result primarily from extensive intercellular coupling via gap (electrical) junctions; thus, the extent of the receptive field provides an index of the degree to which the cells are electrically coupled. For rod-driven horizontal cells in the dark-adapted skate retina, a space constant of 1.18 +/- 0.15 mm (SD) was obtained from measurements with a moving slit stimulus, and a comparable value (1.43 +/- 0.55 mm) was obtained with variation in spot diameter. These values, and the extensive spread of a fluorescent dye (Lucifer Yellow) from the site of injection to neighboring cells, indicate that the horizontal cells of the all-rod retina of skate are well coupled electrically. Neither the receptive field properties nor the gap-junctional features of skate horizontal cells were influenced by the adaptive state of the retina: (a) the receptive field organization was unaffected by light adaptation, (b) similar dye coupling was seen in both dark- and light-adapted retinae, and (c) no significant differences were found in the gap-junctional particle densities measured in dark- and light-adapted retinas, i.e., 3,184 +/- 286/microns 2 (n = 8) and 3,073 +/- 494/microns 2 (n = 11), respectively. Moreover, the receptive fields of skate horizontal cells were not altered by either dopamine, glycine, GABA, or the GABAA receptor antagonists bicuculline and picrotoxin. We conclude that the rod-driven horizontal cells of the skate retina are tightly coupled to one another, and that the coupling is not affected by photic and pharmacological conditions that are known to modulate intercellular coupling between cone-driven horizontal cells in other species.

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3