Proton block of the CLC-5 Cl−/H+ exchanger

Author:

Picollo Alessandra12,Malvezzi Mattia12,Accardi Alessio12

Affiliation:

1. Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242

2. Department of Anesthesiology, Weill Cornell Medical School, New York, NY 10065

Abstract

CLC-5 is a H+/Cl− exchanger that is expressed primarily in endosomes but can traffic to the plasma membrane in overexpression systems. Mutations altering the expression or function of CLC-5 lead to Dent’s disease. Currents mediated by this transporter show extreme outward rectification and are inhibited by acidic extracellular pH. The mechanistic origins of both phenomena are currently not well understood. It has been proposed that rectification arises from the voltage dependence of a H+ transport step, and that inhibition of CLC-5 currents by low extracellular pH is a result of a reduction in the driving force for exchange caused by a pH gradient. We show here that the pH dependence of CLC-5 currents arises from H+ binding to a single site located halfway through the transmembrane electric field and driving the transport cycle in a less permissive direction, rather than a reduction in the driving force. We propose that protons bind to the extracellular gating glutamate E211 in CLC-5. It has been shown that CLC-5 becomes severely uncoupled when SCN− is the main charge carrier: H+ transport is drastically reduced while the rate of anion movement is increased. We found that in these conditions, rectification and pH dependence are unaltered. This implies that H+ translocation is not the main cause of rectification. We propose a simple transport cycle model that qualitatively accounts for these findings.

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3