Massive calcium–activated endocytosis without involvement of classical endocytic proteins

Author:

Lariccia Vincenzo1,Fine Michael1,Magi Simona1,Lin Mei-Jung1,Yaradanakul Alp1,Llaguno Marc C.1,Hilgemann Donald W.1

Affiliation:

1. Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390

Abstract

We describe rapid massive endocytosis (MEND) of >50% of the plasmalemma in baby hamster kidney (BHK) and HEK293 cells in response to large Ca transients. Constitutively expressed Na/Ca exchangers (NCX1) are used to generate Ca transients, whereas capacitance recording and a membrane tracer dye, FM 4–64, are used to monitor endocytosis. With high cytoplasmic adenosine triphosphate (ATP; >5 mM), Ca influx causes exocytosis followed by MEND. Without ATP, Ca transients cause only exocytosis. MEND can then be initiated by pipette perfusion of ATP, and multiple results indicate that ATP acts via phosphatidylinositol-bis 4,5-phosphate (PIP2) synthesis: PIP2 substitutes for ATP to induce MEND. ATP-activated MEND is blocked by an inositol 5-phosphatase and by guanosine 5′-[γ-thio]triphosphate (GTPγS). Block by GTPγS is overcome by the phospholipase C inhibitor, U73122, and PIP2 induces MEND in the presence of GTPγS. MEND can occur in the absence of ATP and PIP2 when cytoplasmic free Ca is clamped to 10 µM or more by Ca-buffered solutions. ATP-independent MEND occurs within seconds during Ca transients when cytoplasmic solutions contain polyamines (e.g., spermidine) or the membrane is enriched in cholesterol. Although PIP2 and cholesterol can induce MEND minutes after Ca transients have subsided, polyamines must be present during Ca transients. MEND can reverse over minutes in an ATP-dependent fashion. It is blocked by brief β-methylcyclodextrin treatments, and tests for involvement of clathrin, dynamins, calcineurin, and actin cytoskeleton were negative. Therefore, we turned to the roles of lipids. Bacterial sphingomyelinases (SMases) cause similar MEND responses within seconds, suggesting that ceramide may be important. However, Ca-activated MEND is not blocked by reagents that inhibit SMases. MEND is abolished by the alkylating phospholipase A2 inhibitor, bromoenol lactone, whereas exocytosis remains robust, and Ca influx causes MEND in cardiac myocytes without preceding exocytosis. Thus, exocytosis is not prerequisite for MEND. From these results and two companion studies, we suggest that Ca promotes the formation of membrane domains that spontaneously vesiculate to the cytoplasmic side.

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3