TIME COURSE AND QUANTUM EFFICIENCY OF PHOTOSYNTHESIS IN CHLORELLA

Author:

Brackett Frederick S.1,Olson Rodney A.1,Crickard Robert G.1

Affiliation:

1. From the Laboratory of Physical Biology, National Institute of Arthritis and Metabolic Diseases, National Institutes of Health, Public Health Service, Federal Security Agency, Bethesda

Abstract

1. Though the quantum yield remains constant for different samples of the same culture despite great changes in respiration due to dark adaptation, the quantum requirement for different cultures varies from 6.1 to 13.5 quanta per molecule of oxygen evolved (q/m). 2. This variation from one culture to another appears to depend upon chlorophyll concentration, though other paralleling factors cannot be ruled out. 3. Both chlorophyll concentration and quantum requirement show a random distribution. A statistical median for 50 cultures and 99 determinations gives q/m = 8.5 with a systematic uncertainty of perhaps 10 per cent. Since the variations are real, the median is regarded as less important than the lower limit approached (about q/m = 6). 4. Dark adaptation under aerobic conditions produces an initial photosynthetic rate of nearly zero. The immediate rise to steady state is somewhat logarithmic in character and may require over 3 minutes. 5. In intermittent light (of periods from 1 to 6 minutes) the induction observed in subsequent light periods starts from a finite initial rate and occupies a shorter time, often as little as 30 seconds. 6. The theoretical importance of aerobic induction is discussed. A chlorophyll cycle of two photochemical steps is found to satisfy most of the observed characteristics and to be compatible with an efficiency independent of intensity.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3