ON BIOLOGICAL OXIDATIONS AS FUNCTION OF TEMPERATURE

Author:

Crozier W. J.1

Affiliation:

1. From the Zoological Laboratory, Rutgers University, New Brunswick.

Abstract

1. The critical thermal increments are calculated for respiratory processes (O2 consumption, CO2 production) in various plants and animals. They are characteristically found to be of two, possibly three, types: µ = 11,500, and 16,100 or 16,700. The first is commonly encountered above 15°, the second below that temperature, but these relations may be reversed. (The value of µ may be significantly changed in inanition.) 2. For reduction of methylene blue by bacteria, through removal of H from succinic acid, µ = 16,700. This process (Quastel and Whetham, 1924) at constant temperature is a function of the hydroxyl ion concentration. The suggestive identity is pointed out of the critical increment for this reduction phenomenon with that deduced for biological respirations in which a dehydrogenation mechanism is supposed to be of widespread occurrence, and in connection with which Fe very likely has a catalytic rôle. The action of OH' is believed to be revealed in the value µ = 11,500, frequently obtained in connection with respiration. 3. A somewhat lower µ (16,140) is associated with the oxidation of Fe'', and may be compared with (1) that of respiration in sea urchin eggs, for which (Warburg) iron is catalyst, and (2) that for some simple reactions in which Fe is known to serve as catalyst; it is not found for oxidative reactions in which Fe is not involved. 4. The bearing of these findings is discussed in relation to the theory of functional analysis of concurrent catalyzed reactions in protoplasm. It is shown that for a number of activities in which the effects of respiration may safely be assumed, the values of the critical increments are consistent with those determined for processes of respiration. 5. The further development of these views may lead to an extremely important method of identifying controlling reactions in undisturbed living matter.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 217 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3