Role of creatine kinase in force development in chemically skinned rat cardiac muscle.

Author:

Ventura-Clapier R,Mekhfi H,Vassort G

Abstract

The influence of phosphocreatine in the presence or absence of MgATP and MgADP was studied in Triton X-100-treated thin papillary muscles and ventricular strips of the rat heart. The pCa/tension relationships, the pMgATP/tension relationships, and the tension responses to quick length changes were analyzed. The results show three major consequences of the reduction of the phosphocreatine concentration in the presence of millimolar concentrations of the MgATP. (a) The resting tension and the maximal Ca2+-activated tension were increased, and the pCa/tension relationship was shifted toward higher pCa values and its steepness was decreased; these effects were enhanced by the inclusion of MgADP. (b) The time constant of tension recoveries after quick stretches applied during maximal activation was increased, while the extent of these recoveries was decreased. (c) The study of pMgATP/tension relationships in low Ca concentrations showed that the decrease in phosphocreatine induced a shift toward higher MgATP values with no changes in maximal rigor tension or the slope coefficient; these effects were increased by the increase in MgADP and were independent of the preparation diameter. Thus, modifications of the apparent Ca sensitivity and resting and maximal tension when phosphocreatine is decreased seem to be due to an increasing participation of rigor-like or slowly cycling cross-bridges spending more time in the attached state. These results suggest that endogenous creatine kinase is able to ensure maximal efficiency of myosin ATPase by producing a local high MgATP/MgADP ratio.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 97 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3