Activation of epithelial Na channels by hormonal and autoregulatory mechanisms of action.

Author:

Els W J1,Helman S I1,Mencio T1

Affiliation:

1. Department of Physiology and Biophysics, University of Illinois, Urbana-Champaign 61801.

Abstract

Methods of blocker-induced noise analysis were used to investigate the way in which forskolin and vasopressin stimulate Na transport at apical membranes of short-circuited frog skin transporting Na at spontaneous rates of transport. Experiments were done under conditions where the apical Ringer solution contained either 100 mM Na or a reduced Na concentration of 5 or 10 mM Na and buffered with either HCO3 or HEPES. Reduction of apical solution Na concentration caused a large autoregulatory increase of Na channel density (NT) similar in magnitude to that observed previously in response to blocker (amiloride) inhibition of apical membrane Na entry. Forskolin at 2.5 microM caused maximal and reversible large increases of NT, which were larger than could be elicited by 30 mU/ml vasopressin. In both the absence and presence of the autoregulatory increase of NT (caused by reduction of apical Na concentration), forskolin caused large increases of NT. Although the fractional increases of NT in response to forskolin were roughly similar, the absolute increases of NT were considerably larger in those tissues studied at reduced Na concentration and where baseline values of NT were markedly elevated by reduction of apical Na concentration. Because the effects on NT were additive, it is likely that the cAMP-dependent and autoregulatory mechanism that lead to changes of NT are distinct. We speculate that autoregulation of NT may involve change of the size of a cytosolic pool of Na-containing vesicles that are in dynamic balance with the apical membranes. cAMP-dependent regulation of NT may involve change of the dynamic balance between vesicles and the apical membranes of these epithelial cells. Alternative hypotheses cannot at present be ruled out, but will require incorporation of the idea that regulation of NT can occur both by hormonal and nonhormonal (autoregulatory) mechanisms of action.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3