THE FLICKER RESPONSE CONTOUR FOR THE ISOPOD ASELLUS

Author:

Crozier W. J.1,Wolf Ernst1,Zerrahn-Wolf Gertrud1

Affiliation:

1. From the Biological Laboratories, Harvard University, Cambridge

Abstract

The flicker response contour for the isopod Asellus is a simple probability integral (F - log I) over the whole determinable range (F = 1 to 51). This contrasts with the "distorted" asymmetrical curves obtained with Apis, Anax, and other arthropods with large convex eyes. The explanation of the distortion as due to mechanical conditions affecting photoreception is therefore confirmed, as the structure of the Asellus eye does not make such a factor likely to be expected for this case. The Asellus curve agrees with the only other available complete and uncomplicated flicker response contour (from Pseudemys, turtle with rod-free retina), in showing the superiority of the probability integral formulation as compared with certain others which have been suggested. It is noted as a curious and probably important fact that the relative dispersion of the intensity thresholds (σ'log I) for the elements implicated in determining the flicker contour appears to be identical in bee, dragon fly nymph, and isopod. Other relevant information derived from similar experiments with vertebrates shows that this quantity is specifically determined by the organization of the animal. The nature of the common feature of neural organization in three such diverse arthropods, as contrasted with the diversity seen within one class of vertebrates (e.g., teleosts), remains to be discovered.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparative Visual Function in Predatory Fishes from the Indian River Lagoon;Physiological and Biochemical Zoology;2013-05

2. Light and vision in the deep-sea benthos: II. Vision in deep-sea crustaceans;Journal of Experimental Biology;2012-10-01

3. Temporal Resolution and Spectral Sensitivity of the Visual System of Three Coastal Shark Species from Different Light Environments;Physiological and Biochemical Zoology;2010-03

4. Effects of Light Adaptation on the Temporal Resolution of Deep-sea Crustaceans;Integrative and Comparative Biology;2003-08-01

5. Temporal resolution in mesopelagic crustaceans;Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences;2000-09-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3