Effects of extracellular ATP on ion transport systems and [Ca2+]i in rat parotid acinar cells. Comparison with the muscarinic agonist carbachol.

Author:

Soltoff S P1,McMillian M K1,Cragoe E J1,Cantley L C1,Talamo B R1

Affiliation:

1. Department of Physiology, Tufts University, Boston, Massachusetts 02111.

Abstract

The effects of extracellular ATP on ion fluxes and the intracellular free Ca2+ concentration ([Ca2+]i) were examined using a suspension of rat parotid acinar cells and were contrasted with the effects of the muscarinic agonist carbachol. Although ATP and carbachol both rapidly increased [Ca2+]i about threefold above the resting level (200-250 nM), the effect of ATP was due primarily to an influx of Ca2+ across the plasma membrane, while the initial response to carbachol was due to a release of Ca2+ from intracellular stores. Within 10 s, ATP (1 mM) and carbachol (20 microM) reduced the cellular Cl- content by 39-50% and cell volume by 15-25%. Both stimuli reduced the cytosolic K+ content by 57-65%, but there were marked differences in the rate and pattern of net K+ movement as well as the effects of K+ channel inhibitors on the effluxes initiated by the two stimuli. The maximum rate of the ATP-stimulated K+ efflux (approximately 2,200 nmol K+/mg protein per min) was about two-thirds that of the carbachol-initiated efflux rate, and was reduced by approximately 30% (vs. 60% for the carbachol-stimulated K+ efflux) by TEA (tetraethylammonium), an inhibitor of the large conductance (BK) K+ channel. Charybdotoxin, another K+ channel blocker, was markedly more effective than TEA on the effects of both agonists, and reduced the rate of K+ efflux initiated by both ATP and carbachol by approximately 80%. The removal of extracellular Ca2+ reduced the ATP- and the carbachol-stimulated rates of K+ efflux by 55 and 17%, respectively. The rate of K+ efflux initiated by either agonist was reduced by 78-95% in cells that were loaded with BAPTA to slow the elevation of [Ca2+]i. These results indicated that ATP and carbachol stimulated the efflux of K+ through multiple types of K(+)-permeable channels, and demonstrated that the relative proportion of efflux through the different pathways was different for the two stimuli. ATP and carbachol also stimulated the rapid entry of Na+ into the parotid cell, and elevated the intracellular Na+ content to 4.4 and 2.6 times the normal level, respectively. The rate of Na+ entry through Na(+)-K(+)-2Cl- cotransport and Na(+)-H+ exchange was similar whether stimulated by ATP, carbachol, or ionomycin, and uptake through these two carrier-mediated transporters accounted for 50% of the ATP-promoted Na+ influx. The remainder may be due to a nonselective cation channel and an ATP-gated cation channel that is also permeable to Ca2+.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 84 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3