Osmotic Properties of the Sealed Tubular System of Toad and Rat Skeletal Muscle

Author:

Launikonis Bradley S.1,Stephenson D. George1

Affiliation:

1. Department of Zoology, La Trobe University, Bundoora, Victoria 3086, Australia

Abstract

A method was developed that allows conversion of changes in maximum Ca2+-dependent fluorescence of a fixed amount of fluo-3 into volume changes of the fluo-3–containing solution. This method was then applied to investigate by confocal microscopy the osmotic properties of the sealed tubular (t-) system of toad and rat mechanically skinned fibers in which a certain amount of fluo-3 was trapped. When the osmolality of the myoplasmic environment was altered by simple dilution or addition of sucrose within the range 190–638 mosmol kg−1, the sealed t-system of toad fibers behaved almost like an ideal osmometer, changing its volume inverse proportionally to osmolality. However, increasing the osmolality above 638 to 2,550 mosmol kg−1 caused hardly any change in t-system volume. In myoplasmic solutions made hypotonic to 128 mosmol kg−1, a loss of Ca2+ from the sealed t-system of toad fibers occurred, presumably through either stretch-activated cationic channels or store-operated Ca2+ channels. In contrast to the behavior of the t-system in toad fibers, the volume of the sealed t-system of rat fibers changed little (by <20%) when the osmolality of the myoplasmic environment changed between 210 and 2,800 mosmol kg−1. Results were also validated with calcein. Clear differences between rat and toad fibers were also found with respect to the t-system permeability for glycerol. Thus, glycerol equilibrated across the rat t-system within seconds to minutes, but was not equilibrated across the t-system of toad fibers even after 20 min. These results have broad implications for understanding osmotic properties of the t-system and reversible vacuolation in muscle fibers. Furthermore, we observed for the first time in mammalian fibers an orderly lateral shift of the t-system networks whereby t-tubule networks to the left of the Z-line crossover to become t-tubule networks to the right of the Z-line in the adjacent sarcomere (and vice versa). This orderly rearrangement can provide a pathway for longitudinal continuity of the t-system along the fiber axis.

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3