Gating Competence of Constitutively Open CLC-0 Mutants Revealed by the Interaction with a Small Organic Inhibitor

Author:

Traverso Sonia1,Elia Laura1,Pusch Michael1

Affiliation:

1. Istituto di Biofisica, Sezione di Genova, CNR, Via De Marini, 6, I-16149 Genova, Italy

Abstract

Opening of CLC chloride channels is coupled to the translocation of the permeant anion. From the recent structure determination of bacterial CLC proteins in the closed and open configuration, a glutamate residue was hypothesized to form part of the Cl−-sensitive gate. The negatively charged side-chain of the glutamate was suggested to occlude the permeation pathway in the closed state, while opening of a single protopore of the double-pore channel would reflect mainly a movement of this side-chain toward the extracellular pore vestibule, with little rearrangement of the rest of the channel. Here we show that mutating this critical residue (Glu166) in the prototype Torpedo CLC-0 to alanine, serine, or lysine leads to constitutively open channels, whereas a mutation to aspartate strongly slowed down opening. Furthermore, we investigated the interaction of the small organic channel blocker p-chlorophenoxy-acetic acid (CPA) with the mutants E166A and E166S. Both mutants were strongly inhibited by CPA at negative voltages with a >200-fold larger affinity than for wild-type CLC-0 (apparent KD at −140 mV ∼4 μM). A three-state linear model with an open state, a low-affinity and a high-affinity CPA-bound state can quantitatively describe steady-state and kinetic properties of the CPA block. The parameters of the model and additional mutagenesis suggest that the high-affinity CPA-bound state is similar to the closed configuration of the protopore gate of wild-type CLC-0. In the E166A mutant the glutamate side chain that occludes the permeation pathway is absent. Thus, if gating consists only in movement of this side-chain the mutant E166A should not be able to assume a closed conformation. It may thus be that fast gating in CLC-0 is more complex than anticipated from the bacterial structures.

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3