The Ca-activated Cl Channel and its Control in Rat Olfactory Receptor Neurons

Author:

Reisert Johannes12,Bauer Paul J.1,Yau King-Wai2,Frings Stephan3

Affiliation:

1. Institut für Biologische Informationsverarbeitung, Forschungszentrum Jülich, 52425 Jülich, Germany

2. Howard Hughes Medical Institute and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205

3. Abteilung Molekulare Physiologie, Universität Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany

Abstract

Odorants activate sensory transduction in olfactory receptor neurons (ORNs) via a cAMP-signaling cascade, which results in the opening of nonselective, cyclic nucleotide–gated (CNG) channels. The consequent Ca2+ influx through CNG channels activates Cl channels, which serve to amplify the transduction signal. We investigate here some general properties of this Ca-activated Cl channel in rat, as well as its functional interplay with the CNG channel, by using inside-out membrane patches excised from ORN dendritic knobs/cilia. At physiological concentrations of external divalent cations, the maximally activated Cl current was ∼30 times as large as the CNG current. The Cl channels on an excised patch could be activated by Ca2+ flux through the CNG channels opened by cAMP. The magnitude of the Cl current depended on the strength of Ca buffering in the bath solution, suggesting that the CNG and Cl channels were probably not organized as constituents of a local transducisome complex. Likewise, Cl channels and the Na/Ca exchanger, which extrudes Ca2+, appear to be spatially segregated. Based on the theory of buffered Ca2+ diffusion, we determined the Ca2+ diffusion coefficient and calculated that the CNG and Cl channel densities on the membrane were ∼8 and 62 μm−2, respectively. These densities, together with the Ca2+ diffusion coefficient, demonstrate that a given Cl channel is activated by Ca2+ originating from multiple CNG channels, thus allowing low-noise amplification of the olfactory receptor current.

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3