Quaternary Organic Amines Inhibit Na,K Pump Current in a Voltage-dependent Manner

Author:

Peluffo R. Daniel1,Hara Yukio2,Berlin Joshua R.1

Affiliation:

1. Department of Pharmacology and Physiology, UMDNJ-New Jersey Medical School, Newark, NJ 07101

2. Department of Veterinary Pharmacology, Kitasato University School of Veterinary Medicine and Animal Sciences, Aomori 034-8628, Japan

Abstract

The effects of organic quaternary amines, tetraethylammonium (TEA) chloride and benzyltriethylammonium (BTEA) chloride, on Na,K pump current were examined in rat cardiac myocytes superfused in extracellular Na+-free solutions and whole-cell voltage-clamped with patch electrodes containing a high Na+-salt solution. Extracellular application of these quaternary amines competitively inhibited extracellular K+ (K+o) activation of Na,K pump current; however, the concentration for half maximal inhibition of Na,K pump current at 0 mV (K0Q) by BTEA, 4.0 ± 0.3 mM, was much lower than the K0Q for TEA, 26.6 ± 0.7 mM. Even so, the fraction of the membrane electric field dissipated during K+o activation of Na,K pump current (λK), 39 ± 1%, was similar to λK determined in the presence of TEA (37 ± 2%) and BTEA (35 ± 2%), an indication that the membrane potential (VM) dependence for K+o activation of the Na,K pump current was unaffected by TEA and BTEA. TEA was found to inhibit the Na,K pump current in a VM-independent manner, i.e., inhibition of current dissipated 4 ± 2% of the membrane electric field. In contrast, BTEA dissipated 40 ± 5% of the membrane electric field during inhibition of Na,K pump current. Thus, BTEA inhibition of the Na,K-ATPase is VM-dependent. The competitive nature of inhibition as well as the similar fractions of the membrane electric field dissipated during K+o-dependent activation and BTEA-dependent inhibition of Na,K pump current suggest that BTEA inhibits the Na,K-ATPase at or very near the enzyme's K+o binding site(s) located in the membrane electric field. Given previous findings that organic quaternary amines are not occluded by the Na,K-ATPase, these data clearly demonstrate that an ion channel–like structure provides access to K+o binding sites in the enzyme.

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3